View Javadoc

1   /**
2    *
3    * Copyright 2004 The Apache Software Foundation
4    *
5    *  Licensed under the Apache License, Version 2.0 (the "License");
6    *  you may not use this file except in compliance with the License.
7    *  You may obtain a copy of the License at
8    *
9    *     http://www.apache.org/licenses/LICENSE-2.0
10   *
11   *  Unless required by applicable law or agreed to in writing, software
12   *  distributed under the License is distributed on an "AS IS" BASIS,
13   *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   *  See the License for the specific language governing permissions and
15   *  limitations under the License.
16   */
17  
18  package org.apache.geronimo.kernel;
19  
20  import java.lang.reflect.Array;
21  import java.util.HashMap;
22  import java.util.Set;
23  import java.util.LinkedHashSet;
24  import java.util.LinkedList;
25  import java.util.Arrays;
26  import java.util.List;
27  import java.util.ArrayList;
28  
29  import org.apache.geronimo.kernel.config.MultiParentClassLoader;
30  
31  /**
32   * Utility class for loading classes by a variety of name variations.
33   * <p/>
34   * Supported names types are:
35   * <p/>
36   * 1)  Fully qualified class name (e.g., "java.lang.String", "org.apache.geronimo.kernel.ClassLoading"
37   * 2)  Method signature encoding ("Ljava.lang.String;", "J", "I", etc.)
38   * 3)  Primitive type names ("int", "boolean", etc.)
39   * 4)  Method array signature strings ("[I", "[Ljava.lang.String")
40   * 5)  Arrays using Java code format ("int[]", "java.lang.String[][]")
41   * <p/>
42   * The classes are loaded using the provided class loader.  For the basic types, the primitive
43   * reflection types are returned.
44   *
45   * @version $Rev: 394430 $
46   */
47  public class ClassLoading {
48  
49      /**
50       * Table for mapping primitive class names/signatures to the implementing
51       * class object
52       */
53      private static final HashMap PRIMITIVE_CLASS_MAP = new HashMap();
54  
55      /**
56       * Table for mapping primitive classes back to their name signature type, which
57       * allows a reverse mapping to be performed from a class object into a resolvable
58       * signature.
59       */
60      private static final HashMap CLASS_TO_SIGNATURE_MAP = new HashMap();
61  
62  
63      /**
64       * Setup the primitives map.  We make any entry for each primitive class using both the
65       * human readable name and the method signature shorthand type.
66       */
67      static {
68          PRIMITIVE_CLASS_MAP.put("boolean", boolean.class);
69          PRIMITIVE_CLASS_MAP.put("Z", boolean.class);
70          PRIMITIVE_CLASS_MAP.put("byte", byte.class);
71          PRIMITIVE_CLASS_MAP.put("B", byte.class);
72          PRIMITIVE_CLASS_MAP.put("char", char.class);
73          PRIMITIVE_CLASS_MAP.put("C", char.class);
74          PRIMITIVE_CLASS_MAP.put("short", short.class);
75          PRIMITIVE_CLASS_MAP.put("S", short.class);
76          PRIMITIVE_CLASS_MAP.put("int", int.class);
77          PRIMITIVE_CLASS_MAP.put("I", int.class);
78          PRIMITIVE_CLASS_MAP.put("long", long.class);
79          PRIMITIVE_CLASS_MAP.put("J", long.class);
80          PRIMITIVE_CLASS_MAP.put("float", float.class);
81          PRIMITIVE_CLASS_MAP.put("F", float.class);
82          PRIMITIVE_CLASS_MAP.put("double", double.class);
83          PRIMITIVE_CLASS_MAP.put("D", double.class);
84          PRIMITIVE_CLASS_MAP.put("void", void.class);
85          PRIMITIVE_CLASS_MAP.put("V", void.class);
86  
87          // Now build a reverse mapping table.  The table above has a many-to-one mapping for
88          // class names.  To do the reverse, we need to pick just one.  As long as the
89          // returned name supports "round tripping" of the requests, this will work fine.
90  
91          CLASS_TO_SIGNATURE_MAP.put(boolean.class, "Z");
92          CLASS_TO_SIGNATURE_MAP.put(byte.class, "B");
93          CLASS_TO_SIGNATURE_MAP.put(char.class, "C");
94          CLASS_TO_SIGNATURE_MAP.put(short.class, "S");
95          CLASS_TO_SIGNATURE_MAP.put(int.class, "I");
96          CLASS_TO_SIGNATURE_MAP.put(long.class, "J");
97          CLASS_TO_SIGNATURE_MAP.put(float.class, "F");
98          CLASS_TO_SIGNATURE_MAP.put(double.class, "D");
99          CLASS_TO_SIGNATURE_MAP.put(void.class, "V");
100     }
101 
102 
103     /**
104      * Load a class that matches the requested name, using the provided class loader context.
105      * <p/>
106      * The class name may be a standard class name, the name of a primitive type Java
107      * reflection class (e.g., "boolean" or "int"), or a type in method type signature
108      * encoding.  Array classes in either encoding form are also processed.
109      *
110      * @param className The name of the required class.
111      * @param classLoader The class loader used to resolve the class object.
112      * @return The Class object resolved from "className".
113      * @throws ClassNotFoundException When unable to resolve the class object.
114      * @throws IllegalArgumentException If either argument is null.
115      */
116     public static Class loadClass(String className, ClassLoader classLoader) throws ClassNotFoundException {
117 
118         // the tests require IllegalArgumentExceptions for null values on either of these.
119         if (className == null) {
120             throw new IllegalArgumentException("className is null");
121         }
122 
123         if (classLoader == null) {
124             throw new IllegalArgumentException("classLoader is null");
125         }
126         // The easiest case is a proper class name.  We just have the class loader resolve this.
127         // If the class loader throws a ClassNotFoundException, then we need to check each of the
128         // special name encodings we support.
129         try {
130             return classLoader.loadClass(className);
131         } catch (ClassNotFoundException ignore) {
132             // if not found, continue on to the other name forms.
133         }
134 
135 
136         // The second easiest version to resolve is a direct map to a primitive type name
137         // or method signature.  Check our name-to-class map for one of those.
138         Class resolvedClass = (Class) PRIMITIVE_CLASS_MAP.get(className);
139         if (resolvedClass != null) {
140             return resolvedClass;
141         }
142 
143         // Class names in method signature have the format "Lfully.resolved.name;",
144         // so if it ends in a semicolon and begins with an "L", this must be in
145         // this format.  Have the class loader try to load this.  There are no other
146         // options if this fails, so just allow the class loader to throw the
147         // ClassNotFoundException.
148         if (className.endsWith(";") && className.startsWith("L")) {
149             // pick out the name portion
150             String typeName = className.substring(1, className.length() - 1);
151             // and delegate the loading to the class loader.
152             return classLoader.loadClass(typeName);
153         }
154 
155         // All we have left now are the array types.  Method signature array types
156         // have a series of leading "[" characters to specify the number of dimensions.
157         // The other array type we handle uses trailing "[]" for the dimensions, just
158         // like the Java language syntax.
159 
160         // first check for the signature form ([[[[type).
161         if (className.charAt(0) == '[') {
162             // we have at least one array marker, now count how many leading '['s we have
163             // to get the dimension count.
164             int count = 0;
165             int nameLen = className.length();
166 
167             while (count < nameLen && className.charAt(count) == '[') {
168                 count++;
169             }
170 
171             // pull of the name subtype, which is everything after the last '['
172             String arrayTypeName = className.substring(count, className.length());
173             // resolve the type using a recursive call, which will load any of the primitive signature
174             // types as well as class names.
175             Class arrayType = loadClass(arrayTypeName, classLoader);
176 
177             // Resolving array types require a little more work.  The array classes are
178             // created dynamically when the first instance of a given dimension and type is
179             // created.  We need to create one using reflection to do this.
180             return getArrayClass(arrayType, count);
181         }
182 
183 
184         // ok, last chance.  Now check for an array specification in Java language
185         // syntax.  This will be a type name followed by pairs of "[]" to indicate
186         // the number of dimensions.
187         if (className.endsWith("[]")) {
188             // get the base component class name and the arrayDimensions
189             int count = 0;
190             int position = className.length();
191 
192             while (position > 1 && className.substring(position - 2, position).equals("[]")) {
193                 // count this dimension
194                 count++;
195                 // and step back the probe position.
196                 position -= 2;
197             }
198 
199             // position now points at the location of the last successful test.  This makes it
200             // easy to pick off the class name.
201 
202             String typeName = className.substring(0, position);
203 
204             // load the base type, again, doing this recursively
205             Class arrayType = loadClass(typeName, classLoader);
206             // and turn this into the class object
207             return getArrayClass(arrayType, count);
208         }
209 
210         // We're out of options, just toss an exception over the wall.
211         if (classLoader instanceof MultiParentClassLoader) {
212             MultiParentClassLoader cl = (MultiParentClassLoader) classLoader;
213             throw new ClassNotFoundException("Could not load class " + className + " from classloader: " + cl.getId() + ", destroyed state: " + cl.isDestroyed());
214         }
215         throw new ClassNotFoundException("Could not load class " + className + " from unknown classloader; " + classLoader);
216     }
217 
218 
219     /**
220      * Map a class object back to a class name.  The returned class object
221      * must be "round trippable", which means
222      * <p/>
223      * type == ClassLoading.loadClass(ClassLoading.getClassName(type), classLoader)
224      * <p/>
225      * must be true.  To ensure this, the class name is always returned in
226      * method signature format.
227      *
228      * @param type The class object we convert into name form.
229      * @return A string representation of the class name, in method signature
230      *         format.
231      */
232     public static String getClassName(Class type) {
233         StringBuffer name = new StringBuffer();
234 
235         // we test these in reverse order from the resolution steps,
236         // first handling arrays, then primitive types, and finally
237         // "normal" class objects.
238 
239         // First handle arrays.  If a class is an array, the type is
240         // element stored at that level.  So, for a 2-dimensional array
241         // of ints, the top-level type will be "[I".  We need to loop
242         // down the hierarchy until we hit a non-array type.
243         while (type.isArray()) {
244             // add another array indicator at the front of the name,
245             // and continue with the next type.
246             name.append('[');
247             type = type.getComponentType();
248         }
249 
250         // we're down to the base type.  If this is a primitive, then
251         // we poke in the single-character type specifier.
252         if (type.isPrimitive()) {
253             name.append((String) CLASS_TO_SIGNATURE_MAP.get(type));
254         }
255         // a "normal" class.  This gets expressing using the "Lmy.class.name;" syntax.
256         else {
257             name.append('L');
258             name.append(type.getName());
259             name.append(';');
260         }
261         return name.toString();
262     }
263 
264     private static Class getArrayClass(Class type, int dimension) {
265         // Array.newInstance() requires an array of the requested number of dimensions
266         // that gives the size for each dimension.  We just request 0 in each of the
267         // dimentions, which is not unlike a black hole sigularity.
268         int dimensions[] = new int[dimension];
269         // create an instance and return the associated class object.
270         return Array.newInstance(type, dimensions).getClass();
271     }
272 
273     public static Set getAllTypes(Class type) {
274         Set allTypes = new LinkedHashSet();
275         allTypes.add(type);
276         allTypes.addAll(getAllSuperClasses(type));
277         allTypes.addAll(getAllInterfaces(type));
278         return allTypes;
279     }
280 
281     private static Set getAllSuperClasses(Class clazz) {
282         Set allSuperClasses = new LinkedHashSet();
283         for (Class superClass = clazz.getSuperclass(); superClass != null; superClass = superClass.getSuperclass()) {
284             allSuperClasses.add(superClass);
285         }
286         return allSuperClasses;
287     }
288 
289     private static Set getAllInterfaces(Class clazz) {
290         Set allInterfaces = new LinkedHashSet();
291         LinkedList stack = new LinkedList();
292         stack.addAll(Arrays.asList(clazz.getInterfaces()));
293         while (!stack.isEmpty()) {
294             Class intf = (Class) stack.removeFirst();
295             if (!allInterfaces.contains(intf)) {
296                 allInterfaces.add(intf);
297                 stack.addAll(Arrays.asList(intf.getInterfaces()));
298             }
299         }
300         return allInterfaces;
301     }
302 
303     public static Set reduceInterfaces(Set source) {
304         Class[] classes = (Class[]) source.toArray(new Class[source.size()]);
305         classes = reduceInterfaces(classes);
306         return new LinkedHashSet(Arrays.asList(classes));
307     }
308 
309     /**
310      * If there are multiple interfaces, and some of them extend each other,
311      * eliminate the superclass in favor of the subclasses that extend them.
312      *
313      * If one of the entries is a class (not an interface), make sure it's
314      * the first one in the array.  If more than one of the entries is a
315      * class, throws an IllegalArgumentException
316      *
317      * @param source the original list of interfaces
318      * @return the equal or smaller list of interfaces
319      */
320     public static Class[] reduceInterfaces(Class[] source) {
321         // use a copy of the sorce array
322         source = (Class[]) source.clone();
323 
324         for (int leftIndex = 0; leftIndex < source.length-1; leftIndex++) {
325             Class left = source[leftIndex];
326             if(left == null) {
327                 continue;
328             }
329 
330             for (int rightIndex = leftIndex +1; rightIndex < source.length; rightIndex++) {
331                 Class right = source[rightIndex];
332                 if(right == null) {
333                     continue;
334                 }
335 
336                 if(left == right || right.isAssignableFrom(left)) {
337                     // right is the same as class or a sub class of left
338                     source[rightIndex] = null;
339                 } else if(left.isAssignableFrom(right)) {
340                     // left is the same as class or a sub class of right
341                     source[leftIndex] = null;
342 
343                     // the left has been eliminated; move on to the next left
344                     break;
345                 }
346             }
347         }
348 
349         Class clazz = null;
350         for (int i = 0; i < source.length; i++) {
351             if (source[i] != null && !source[i].isInterface()) {
352                 if (clazz != null) {
353                     throw new IllegalArgumentException("Source contains two classes which are not subclasses of each other: " + clazz.getName() + ", " + source[i].getName());
354                 }
355                 clazz = source[i];
356                 source[i] = null;
357             }
358         }
359 
360         List list = new ArrayList(source.length);
361         if (clazz != null) list.add(clazz);
362         for (int i = 0; i < source.length; i++) {
363             if(source[i] != null) {
364                 list.add(source[i]);
365             }
366         }
367         return (Class[]) list.toArray(new Class[list.size()]);
368     }
369 }
370